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Abstract

Texture analysis has been used to classify photographic images of meat slices. Among the multiple muscular tissue characteristics

that in¯uence meat quality, the connective tissue content and spatial distribution, which de®ne the grain of meat, are of great
importance because they are directly related to its tenderness. Connective tissue contains two important components, fat and col-
lagen, which are variable with muscles, breed and also with age. These components are clearly visible on photographic images. Fat
and collagen are particularly emphasised by ultraviolet light. The meat slices analysed came from 26 animals raised at INRA of

Theix by the LCMH Laboratory. Three di�erent muscles were selected and cut o� from carcasses of animals of di�erent breeds and
of di�erent ages. The biological factors (muscle type, age and breed) directly in¯uence the structure and composition of the muscle
samples. The image analysis led to a representation of each meat sample with a 58 features vector. Classi®cation experiments were

performed to identify the samples according to the three variation factors. This study shows the potential of image analysis for meat
sample recognition. The correlation of the textural features with chemical and mechanical parameters measured on the meat sam-
ples was also examined. Regression experiments showed that textural features have potential to indicate meat characteristics.

# 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Arti®cial vision is a technique largely used in the ®eld
of food product. This technique consists of associating a
video camera, devoted to image acquisition, with a
computer used for image analysis. The automatic ana-
lysis of images requires a ®rst step of digitisation which
transforms the video signal into a two-dimensional
matrix of numbers. Each matrix entry is a pixel (picture
element) with an entire value called ``grey level''.
Usually the grey level values are coded with an eight bits
number, allowing to distinguish 256 grey levels from 0
(black) to 255 (white). The image analysis is imple-
mented to characterise an object or a surface on the
visualised image, in particular by analysing the texture.
The image texture can be de®ned as the spatial organi-
sation of grey levels of pixels of digitised images. Thus,
the meaning of the term texture, when image processing
is concerned, is completely di�erent from the usual
meaning in the ®eld of food product.

In general, the process of texture analysis requires the
calculation of various features for each texture. These
features contain information representative of visual
characteristics (coarseness of the texture, regularity,
presence of a privileged direction, size of a representa-
tive neighbourhood), but also of characteristics which
can not be visually di�erentiated. A wide range of
applications of image texture analysis to characterise
food products have been proposed. For example, sta-
tistical methods have been used to describe the porosity
of extruded biscuits from photographic digitised images
(Maloigne, Fernandez, Smolarz & Bouvier, 1989). The
``angle measure technique'' was implemented by
Esbensen, Hjelmen and Kvaal (1996) as a texture fea-
tures extractor on bread images. These authors pro-
posed the method as an alternative to human sensory
analysis. In an other domain, the structure of myo®-
brillar protein gel has been analysed by applying on
images, obtained by transmission electron microscopy,
a granulometry method based on morphology mathe-
matics (Bastien, Joandel-Monier & Culioli, 1997).
In the ®eld of meat science, several authors have pro-

posed image analysis approaches to characterise meat
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sample images. The quanti®cation of meat quality is a
challenge of major importance in the meat industry.
Among the multiple muscular tissue characteristics that
in¯uence the meat quality, connective tissue quantity
and spatial distribution, which de®ne the grain of meat,
are of great importance because they are directly related
to its tenderness (Dumont, 1986; Lepetit & Culioli,
1994).
Several approaches have been studied for the char-

acterisation of meat quality. Non destructive methods
of marbling determination (quantity and distribution of
intra-muscular fat) have been investigated for the clas-
si®cation of muscles or parts of muscles. Among these
methods, ultrasonic techniques used on living animals
or on muscles, have been largely explored (Abouelk-
aram, Berge & Culioli, 1997; Whittaker, Park, Thane,
Miller & Savell, 1992). These technniques investigate the
texture analysis of ultrasonic images (Amin, Wilson,
Roberts & Rouse, 1993; Brethour, 1990), in particular
to correlate textural features with the intramuscular fat
content (Kim, Amin, Wilson, Rouse & Udpa, 1998) or
the texture analysis of elastograms (Miller et al., 1996).
The direct analysis of the connective tissue on muscle

slices should also lead to the determination of morpho-
logic parameters, speci®c to the various muscles and
animal types. However, the implementation of such an
analysis is di�cult because the connective network is a
complex structure, exhibiting di�erent levels of organi-
sation. Therefore, a di�erent approach consisting of a
global characterisation of photographic images of meat
slices was proposed. Gerrard, Gao and Tan (1996) used
histogram description and morphologic features calcu-
lated on colour images to accurately predict the colour
and marbling score of beef steaks. The analysis of meat
images, performed under visible or ultraviolet (UV)
light, has also emphasised the potential of texture ana-
lysis to identify meat samples according to various var-
iation factors (Basset, Dupont, Hernandez, Odet,
Abouelkaram & Culioli, 1999). To further explore the
possibilities of this approach, other texture analysis
techniques have been implemented in this paper and
have been tested on another set of images of bovine
meat slices. The automatic recognition of meat samples
could enable us to objectively identify the meat origin.
Then, the correlation of textural features with physical
measurements performed on the same samples and
related to meat quality is examined.

2. Material

2.1. Selection of muscles

The samples were chosen to exhibit a large variability
in terms of composition and structure. Three di�erent
muscles were selected and cut o� from carcasses of ani-

mals of di�erent breeds and of di�erent ages. The bio-
logical factors (muscle type, age and breed) directly
in¯uenced the structure and composition of the muscle
samples.
The meat slices analysed came from 26 animals pro-

vided by the CMH Laboratory of INRA (Theix,
France). Four di�erent breeds were represented in the
set of animals : Limousin (7 animals), Salers (6 animals),
Aubrac (7 animals) and Charolais (6 animals). They
were slaughtered at the age of 15 months (7 males), 19
months (6 males), 24 months (4 males) and after 3 years
old (9 females). After slaughter at the research centre
abattoir, the carcasses were chilled down to 2�C and the
selected muscles [semitendinosus (ST), longissimus dorsi
(LD) and triceps brachii (TB)] were excised 2 days post-
mortem. Table 1 summarises the number of samples
available for this analysis, in each class. The data set
consists of 48 di�erent classes [(4 classes of breeds)�(4
classes of ages)�(3 classes of muscles)]. Each muscle
was cut at di�erent locations, perpendicular to the
direction of the myo®bre, in order to obtain, in most
cases, four meat slices.

2.2. Data acquisition

The imaging system was composed of a CCD camera
(SONY MACC 77, NOESIS, France) mounted on a
photographic bench (Fig. 1). The camera was connected
to a PC computer equipped with a digitisation card
(Matrox-Meteor). The images were digitised at 256 grey
levels. For each meat slice, two images of the exact same
size were acquired, one under visible light, the other
under UV light (¯uorescence). In these conditions, it
was possible to increase the contrast between muscle
®bre bundles and collagen or fat. The digitised meat
surface had to be large enough to be representative of
the sample, but not too large, so as to retain a good

Table 1

Number of muscle samples in each class: LD, Longissimus dorsi; TB,

Triceps brachii; ST, Semitendinosus

Age

Breed 15 months 19 months 24 months >3 years

Limousin LD 1 LD 1 LD 1 LD 2

TB 2 TB 1 TB 1 TB 3

ST 1 ST 1 ST 1 ST 2

Salers LD 1 LD 2 LD 1 LD 2

TB 1 TB 2 TB 1 TB 2

ST 1 ST 1 ST 1 ST 2

Aubrac LD 2 LD 1 LD 1 LD 2

TB 1 TB 1 TB 1 TB 2

ST 2 ST 2 ST 1 ST 2

Charolais LD 1 LD 1 LD 1 LD 2

TB 2 TB 1 TB 1 TB 2

ST 2 ST 1 ST 1 ST 2
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resolution of the connective network. A surface of 3�3
cm digitised to 512�512 pixels was considered as a good
compromise and was extracted for image processing.

3. Methods

The texture analysis methods used can be classi®ed in
two categories. On the one hand, the statistical methods
characterise the pixel grey level distribution and orga-
nisation. On the other hand, the methods based on
morphology mathematics are applied on binary images
to characterise larger structures such as lipid and col-
lagen inclusions. The image analysis procedure can be
de®ned as a system in which input is an image and the
output is a series of features provided by the analysing
techniques implemented. Each image is then char-
acterised by a vector of features. A classi®cation step is
then required to de®ne the relevant features, constitut-
ing a signature of the studied samples.

3.1. Features extraction

The images acquired under visible light exhibited the
®ne structure of the muscle ®bre bundles. Therefore, the
texture analysis was performed on these images. The
ultraviolet lighting (¯uorescence) of meat samples high-
lighted the marbling pattern. Intramuscular fat and/or
collagen appeared more contrasted than on images
acquired under visible light and the ®ne structures were
hardly distinguishable. Therefore, these images were not
used for texture analysis, but for the characterisation of
the amount and distribution of fat and collagen. Visible
and ultraviolet images underwent a speci®c processing
before the extraction of features.

3.2. Pre-processing of the images

The meat slices placed under the camera were not
perfectly ¯at. Therefore, the lighting was not homo-
geneous on the whole surface of the sample and a pre-
processing step was required to reduce the e�ect of this
artefact on the digitised images acquired under visible
light.

The processing consisted of subtracting from the ori-
ginal image, an image processed with an average mask
of 51�51 pixels. This processing reduces the e�ect of
non-homogeneous lighting and emphasises the texture
on the image.
After ®ltering, the images underwent a grey scale

remapping using linear scaling. Fig. 2 shows an example
of an original and ®ltered image of a meat sample
acquired under visible light.
After a linear grey scale remapping, the ultraviolet

images are binarized using a threshold so that the mus-
cle ®bres appear in black and ¯uorescent fat and col-
lagen in white (Fig. 3). The skeleton of the binarised
image is also calculated.

3.3. Textural features calculated on images acquired
under visible lighting

Fifty di�erent textural features were calculated. They
derived from eight texture analysis methods. The rela-
tionship between the features calculated and the visual
aspect of the images was in most cases di�cult to
establish. The implemented methods are brie¯y descri-
bed hereafter.

3.3.1. First-order statistical features
In fact, features calculated using an image ®rst-order

statistics are not textural features because they consider
the intensity of individual pixels, independently of their
neighbouring pixels. In other words these features
merely describe the grey level histogram of an image.
However, the mean and variance of grey levels and the
moment of higher degrees were calculated (six features)
to represent the grey level distribution and the degree of
homogeneity of each image.

3.3.2. Co-occurrence matrices
The co-occurrence matrices method describes the sec-

ond order statistics of the images. This technique is
commonly used in texture analysis because it provides for
each sample a large set of features, and it can be assumed
that at least one of these features re¯ects the small varia-
tion of texture between classes.
This method is based on the estimation of the second-

order joint conditional probability density functions
Pd;��i; j�. Each Pd;��i; j� is the probability of going from
a grey level i to a grey level j in a given direction � at a
given intersample spacing d. The co-occurrence matrix
Pd;� is a representation of the estimated values. It is a
square matrix of dimension Ng (Ng is the number of
grey levels in the image).
To summarise the content of a co-occurrence matrix, a

number of texture features can be de®ned. A set of
16 features, de®ned by Haralick, Shanmugam and Din-
stein (1973) were calculated. These were the Angular
second moment, Contrast, Correlation, Variance, Inverse

Fig. 1. Image acquisition set up.
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di�erence moment, Sum average, Sum variance,
Di�erence variance, Sum entropy, Entropy, Di�erence
entropy, Information measures of correlation (4), Max-
imum probability.

3.3.3. Neighbouring grey level dependence matrix
To avoid angular dependence of the co-occurrence

matrix, the neighbouring grey level dependence matrix
has been proposed. In this approach, the matrix entries
Pd�i; j� represent the number of occurrences where a
pixel of grey level i has j neighbours of grey level i in a
d�d neighbourhood. From this matrix, features
describing texture can be de®ned analogously to those
de®ned for the co-occurrence matrix. Twelve features
were calculated. They were essentially invariant under
spatial rotation and linear grey level transformation
(Lee, Lee & Kim, 1992).

3.3.4. Grey level run lengths matrix
The grey level run lengths method is based on com-

puting the number of grey level runs of various lengths.
A grey level run is a set of linearly adjacent picture
points having the same grey level value. The length of
the run is the number of picture points within the run.
The element r(i,j,�) of the grey level run length matrix
speci®es the number of times a picture contains a run of
length j for grey level i in the � direction. Five features
were calculated from these matrices (Galloway, 1975).

3.3.5. Fourier power spectrum analysis
This method requires ®rst computation of the image

power spectrum from the bi-dimensionnal discrete

Fourier transform. The features commonly used with
the power spectrum method are the summation of the
frequential components included either in an annular-
ring geometry, which gives a measure of the texture
coarseness or included in a wedge geometry, which
contains directionality information. Because the meat
samples were placed under the CCD camera regardless
of a particular muscle orientation, directionality infor-
mation is not useful in our application. One feature
representing the texture coarseness was calculated.

3.3.6. Relative extrema measures
The density of local extrema of various sizes in inten-

sity has been proposed for a texture measure. The algo-
rithm looks for relative extrema within a line in a given
direction. The scan line is smoothed with a variable
threshold T. The number of extrema versus T can be
used as a characteristic of the texture (Mitchell, Myers
& Boyne, 1977).

3.3.7. Fractal method
The theory of fractals has led to several multi-

resolution methods of texture analysis. They assume
that images exhibit identical grey level statistics at dif-
ferent scales of examination. A measure of this beha-
viour is the fractal dimension which is an indication of
the coarseness of the texture. The implemented method
has been described by Pentland (1984).

3.3.8. Texture spectrum
He and Wang (1991) have introduced a model of

texture analysis based on the concept of texture unit, in

Fig. 2. Example of a meat image (muscle ST, animal Salers, 15 month old). (a) original image; (b) smoothed image of (a); (c) is the result of the grey

scale remapping of (a) and (b).

Fig. 3. (a) Original image of a meat sample (muscle ST, Limousin, 15 month old) acquired under visible lighting; (b) results from the pre-processing

of (a); (c) is the same sample acquired under UV lighting; (d) binarization of (c); (e) skeleton of (d).
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which an image can be characterised by its texture
spectrum. Local texture information can be extracted
for each pixel from a neighbourhood of 3�3 pixels
which represents the texture unit. The intensity of the
central pixel is compared to the intensity of its eight
ordered neighbours and the resulting con®guration is
coded. There are 38 possible texture units in total. The
spectrum counts the occurrence of each unit in the ima-
ges. Eight features are then calculated to describe the
spectrum.

3.4. Morphological features calculated on images
acquired under ultraviolet lighting

As the texture of meat images is created by the con-
nective network, eight features, speci®cally representa-
tive of the distribution and amount of intramuscular fat
and collagen, have been calculated. Four were derived
from the binarized UV images and four characterised
the skeleton of the binarized images. These features
measured the number of white pixels, the average size of
white areas, the number of objects and the size of the
largest object in both images. On the binarized image,
the number of white pixels represents the total surface
of fat and collagen and on the second image, the length
of the skeleton.

3.5. Classi®cation

3.5.1. Selection of features
The classi®cation was performed in view to evaluate

the relevance of a selection of textural features to
recognise the di�erent meat samples. The implemented
classi®cation methods used an iterative selection
method. At ®rst, an initial selection of features was
made. The selected features were the most relevant
according to the Fisher criterion. Then the test data
set was classi®ed and the recognition rate was com-
puted. At each iteration, one feature was added, the test
data set was re-classi®ed and the new recognition rate
was computed. The feature that gave the maximal
recognition rate was added to the list of selected fea-
tures. The algorithm iterates until all the features were
used.

3.5.2. Classi®cation methods
The features selection method was tested on our data

base with the K nearest neighbours method (Fukunaga,
1972) (KNN). With the KNN method each pattern of
the training set is stored as a prototype. The class of a
new pattern is directly obtained from the computation
of the distance between this pattern and each prototype
in the data base. Among the K nearest neighbours, the
majority class is assigned to the unknown pattern. This
supervised method requires the feature vectors and the
true class of each pattern for the learning database.

4. Results

4.1. Classi®cation experiments

For each meat sample, 58 features were calculated: 50
for the visible light images and 8 features for the UV
light images as described above. To evaluate the
importance of the variation factors, several experiments
were conducted with various aims for classi®cation (i.e.
classi®cation according to the age of animals, the breed
or the muscle). The features selection algorithm was
initialised with one feature: the most relevant according
to the Fisher criterion. The classi®cation experiments
were conducted using randomly-selected 60% of the
data in the training set and the testing was performed
with the remaining 40% of the data. This process was
repeated several times, each time with di�erent
randomly-selected training and testing set. The various
experiments led, in most cases to similar results. The
variability of the classi®cation rate obtained for the
various experiments was small when the number of
samples per class was large. As the number of meat
samples was relatively small, some experiments involved
a small number of images and a larger variability was
observed. Moreover, the various images were not
completely independent because four images were
acquired on the same meat sample. However it was
veri®ed that the intra-sample variability of the
calculated features was comparable to the variability
obtained with di�erent samples of the same class.
The classi®cation rates obtained are reported in Table 2.
In particular, the correct classi®cation rates obtained
with a small number of features, have been reported,
in order to identify the most relevant features
characterising the particularities of the various sam-
ples.
Classi®cation using the 48 classes de®ned in Table 1

did not led to satisfying results. Only 25.4% of the
samples were correctly classi®ed. The small number of
samples can explain these poor results (several classes
include only one animal).
One can remark that the variability between muscles

is higher than the variability between breeds or ages.
They can be classify more easily. Sixty percent of the
muscles (LD and TB) were correctly classi®ed with only
two features.
Other experiments were conducted to perform classi-

®cation from a selected part of the data set in view to
avoid one variation factor. The set of images was sub-
divided for the classi®cation of the muscles or of the
breeds according to a particular age, for the classi®ca-
tion of muscles or ages when the breed was known and
for the classi®cation of breeds or ages from images of
one kind of muscle. As expected, higher classi®cation
rates were obtained than when all the samples were
involved.
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The classi®cation of the muscles from animals selected
in one age category, regardless of the muscles, led to
high identi®cation rates: larger than 72% with two fea-
tures and larger than 82% with four features. In gen-
eral, LD muscles presents numerous spread out white
¯ecks. This is more pronounced on Salers images. TB
muscles present large and linear fat or collagen inclu-
sions. ST muscles exhibit a more homogeneous back-
ground, corresponding to the lean, than other muscles
(Fig. 4). These visual particularities are expressed by
some textural features as shown on Fig. 5. Because of
the large clear areas on muscle TB images, the histo-
gram is not symmetrical according to the mean value of
grey levels and the feature describing the dissymmetry

of the image histogram is higher than on other images.
The homogeneity of muscles ST is characterised by the
feature ``non-uniformity of the neighbours number''
calculated from the neighbouring grey level dependence
matrix.
The classi®cation of the breeds from the oldest animal

category, regardless of the muscles, was a more di�cult
task: 63.4% of correctly classi®ed samples with two
features. Fig. 6 shows examples of images acquired on
the same muscles of two di�erent breed animals. Some
particularities of each kind of images can be remarked.
One concerns the histogram of the images. After a grey
scale remapping, the Limousin images appear clearer
than the Salers one. A second remark can be made

Table 2

Classi®cation results

Classi®cation goals

(number of classes)

Type of images used

(number of images)

% correctly

classi®ed: 2 features

% correctly

classi®ed: 4 features

Maximum %

of correctly classi®ed

Ages, muscles and breeds (48) All samples (272) 11.9 17.2 25.4 (18 features)

Muscles (3) All samples (272) 60 66.4 76.4 (13 features)

Breeds (4) All samples (272) 33.3 37.8 49.6 (19 features)

Ages (4) All samples (272) 46.8 53.4 58.9 (10 features)

Muscles (3) 15 month old animals (66) 74.1 88.9 96.3 (17 features)

Breeds (4) 15 month old animals (66) 59.3 74.1 77.8 (8 features)

Muscles (3) 19 month old animals (60) 75 87.5 95.8 (17 features)

Breeds (4) 19 month old animals (60) 48 60 64 (9 features)

Muscles (3) 24 month old animals (48) 85 95 95 (4 features)

Breeds (4) 24 month old animals (48) 45 50 55 (7 features)

Muscles (3) >3 years old animals (98) 72.5 82.5 87.5 (13 features)

Breeds (4) >3 years old animals (98) 63.4 63.4 63.4 (2 features)

Muscles (3) Limousin (68) 64.3 78.6 82.1 (6 features)

Ages (4) Limousin (68) 67.9 67.9 75 (5 features)

Muscles (3) Salers (67) 71.4 82.1 92.9 (16 features)

Ages (4) Salers (67) 54.8 67.7 80.7 (7 features)

Muscles (3) Aubrac (69) 82.8 79.3 89.7 (8 features)

Ages (4) Aubrac (69) 55.2 65.5 79.5 (19 features)

Muscles (3) Clarolais (68) 75 70.8 87.5 (8 features)

Ages (4) Charolais (68) 60 68 80 (7 features)

Breeds (4) Muscle st (88) 38.9 41.67 50 (15 features)

Ages (4) Muscle st (88) 67.3 75 80.8 (6 features)

Breeds (4) Muscle ld (89) 41.7 50 66.7 (11 features)

Ages (4) Muscle ld (89) 43.2 59.5 62.16 (6 features)

Breeds (4) Muscle tb (95) 52.63 55.26 63.16 (7 features)

Ages (4) Muscle tb (95) 52.5 60 67.5 (8 features)

Fig. 4. Examples of images of the three muscles of a 15 month old animal (breed: Salers).
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about the shape of fat and collagen inclusions which are
more linear and regular on Limousin images than on the
Salers images. These trends are expressed by features used
in the classi®cation. This is illustrated in Fig. 7: samples
of the two di�erent breeds are represented according to
two textural features which exhibit a potential to dis-
criminate the two breeds.
The classi®cation of the various samples according to

the age of animals requires a large number of features to
obtain good classi®cation rates. This seems to indicate
that it is di�cult to detect some speci®cities to each age
category characterising the connective network. This is
illustrated by the images shown in Fig. 8. They repre-
sent the muscle LD of Limousin animals of various
ages. The connective network appears more clearly on
the images of the youngest animals. This is con®rmed
by the feature expressing the number of elements on the
skeleton of the binarized UV images which had much
larger value for the youngest animals. But it was not

possible to discern an evolution in the other categories
of animals with this feature. This is in accordance
with the visual examination of the binarized images in
Fig. 8.

4.2. Correlation of textural features with meat
characteristics

For each of the meat sample used in this study, three
chemical parameters were measured : dry matter con-
tent, lipid content and collagen content and two
mechanical parameters: k20, k80 (k20 is the stress at
20% compression of samples). The chemical values were
obtained from the entire muscle samples whereas the
mechanical data were measured on each of the four
meat slices of each muscle. The e�ciency of textural
features to indicate the physical parameters was exam-
ined. In an initial study, simple correlation coe�cients
between textural features and physical characteristics
were calculated. Table 3 reports the maximal value of
correlation coe�cients obtained for each physical para-
meter. It shows that a relationship existed between the
meat characteristics and some textural features; how-
ever, this relationship was not very strong.
To indicate physical characteristics from textural fea-

tures, the stepwise linear regression method was used.
The textural features were de®ned as independent vari-
ables and physical features as dependent variables. The
results are reported in Table 4. The regression was per-
formed by adding textural features until the R-square
coe�cient R2 increased signi®cantly.
The experiments had been carried out, on one hand,

by taking into account all the available samples and on
the other hand with a selected part of the data base. As
an example, the regression results obtained for para-
meters k20 and k80 with only the textural features pro-
vided by the Limousin animals, the 15 month old
animals or the TB muscles, are given in Table 4.
The R2 ranged from 0.3 to 0.59 (P<10ÿ4) with a

number of parameter k varying from 13 to 21 when all

Fig. 6. Examples of TB muscles images of four 15 months old animals

of breed Limousin and Salers.

Fig. 5. Representation of the meat samples of Salers animals from two

textural features discriminating the three muscles (horizontal axis:

histogram dissymmetry; vertical axis: non-uniformity of the neigh-

bourhood number calculated from the ``neighbouring grey level

dependence matrix'' method.

Fig. 7. Representation of the meat samples of two di�erent breeds

(age higher than 3 years) according to 2 textural features calculated

from the cooccurrence matrix method (x-axis) and from the grey level

dependence matrix method (y-axis).
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the meat samples are considered. When one variation
factor was eliminated in the regression, higher R2 coef-
®cient were obtained and the results were statistically
signi®cant (P<10ÿ4). The feature k80 can be indicated
with R2=0.8 (P<10ÿ4) from textural features calculated
on Limousin images. When only the younger animals
are considered, the regression of k80, performed with 11
features accounted for a high amount (73%) of the
variability in the observations (R2=0.73, P<10ÿ4). The
textural features calculated from one selected muscle

seemed to be less e�cient for the indication of the
mechanical parameters.
From these results, one can remark that the predic-

tion capability of physical parameters is improved when
few variation factors are involved in the data. This
indicates that the de®nition of a global model of pre-
diction for a physical parameter is a di�cult problem. It
is not convenient to consider simultaneously the e�ects
of age, breed and muscle on the texture of the images to
build robust prediction models.

Fig. 8. Images of muscle LD of Limousin animals at various ages acquired under visible lighting (top) and acquired under ultraviolet lighting after

binarization (bottom).

Table 3

Correlation coe�cientsa

Physical and chemical parameters Textural feature rmax

Dry matter Relative extrema measure 0.41

Lipid Texture spectrum (diagonal structure) ÿ0.26
Collagen Texture specrum (black±white symmetry) 0.49

k20 Texture spectrum (degree of direction) ÿ0.44
k80 Texture spectrum (black±white symmetry) 0.41

a The most correlated textural feature with each physical and chemical parameters and the corresponding correlation coe�cients (rmax) are indicated.

Table 4

Stepwise linear regression results for indicating physical parameters from textural featuresa

Dependent

variable

All animals Limousin

animals

15 month old

animals

TB muscles

Dry

matter

Lipid Collagen k20 k80 k20 k80 k20 k80 k20 k80

R2 0.48 0.3 0.59 0.40 0.39 0.63 0.8 0.66 0.73 0.58 0.5

P <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4 <10ÿ4

k 21 17 17 20 13 19 19 20 11 19 20

a k is the number of features used in the regression.
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5. Conclusion

In this study, the texture of photographic images was
analysed using several feature extraction methods to
evaluate the possibility of identifying bovine meat sam-
ples.
The classi®cation of the samples showed encouraging

results. Certain classi®cation experiments led to a large
score of correctly classi®ed images with a few number of
features.
Textural features calculated on visible and UV light

images have the potential to be used as a method of
indicating physical characteristic of meat samples.
Hence, texture analysis has a good potential in the ela-
boration of an objective method for the evaluation of
the quality of meat. The possibility of certifying the
origin of the meat and the kind of meat proposed to the
consumer is of major interest.
The textural features which revealed to be relevant in

the classi®cation experiments derived mainly from the
``texture spectrum'' method, from the ``neighbouring
grey level dependence matrix'' method and from the
``®rst-order statistical measurements''. These latter
features are not really textural measurements, as they
describe the grey levels histogram. However, they are
often e�cient in a classi®cation because they give a
global description of the marbling and of the lean grey
level intensity, whereas texture measurements are a
description of the local structure of the connective tis-
sue. Even if the muscle structure is emphasised by
¯uorescence, the features calculated on ultraviolet ima-
ges and describing the connective tissue are not su�-
cient to identify the various samples.
The discriminant capacity of some features has been

discussed in this paper. However, the various features
calculated are not completely uncorrelated and some of
them express slight variations in the image texture.
Thus, the selection of some features as the more relevant
according to a classi®cation goal is not obvious.

Acknowledgements

This work has been supported by the European
Union (AIR Project CT96-1107).

References

Abouelkaram, S., Berge, P., & Culioli, J. (1997) Application of ultra-

sonic data to classify bovine muscles. IEEE ultrasonic symposium,

(pp. 1197±1200). Toronto, Canada.

Amin, V. R., Wilson, D. E., Roberts, R. & Rouse, G. (1993) Tissue

characterization for beef grading using texture analysis on ultrasonic

images. In IEEE ultrasonic symposium, (pp. 969±972). Baltimore, USA.

Basset, O., Dupont, F., Hernandez, A., Odet, C., Abouelkaram, S., &

Culioli, J. (1999). Texture image analysis: application to the classi-

®cation of bovine muscles from meat slice images. Optical Engine-

ering, 38, 1956±1959.

Bastien, O., Joandel-Monier, S. & Culioli, J. (1997). Relation entre

l'ultrastructure et les proprieÂ teÂ s rheÂ ologiques de gels de proteÂ ines

myo®brillaires. In 32eÁme colloque du groupe francË ais de rheÂologie,

(pp. 151±160). Nantes, France.

Brethour, J. R. (1990). Relationship of ultrasound speckle to marbling

score in cattle. Journal of Animal Science, 68, 2603±2613.

Dumont, B. L. (1986) La structure des muscles. In La restructuration

des viandes, (pp. 43±51). Paris: ERTI.

Esbensen, K. H., Hjelmen, K. H., & Kvaal, K. (1996). The AMT

approach in chemometrics Ð ®rst forays. Journal of Chemometrics,

10, 569±590.

Fukunaga, K. (1972). Introduction to statistical pattern recognition.

New York: Academic Press.

Galloway, M. (1975). Texture analysis using grey level run lengths.

Computer Vision, Graphics and Image Processing, 4, 172±179.

Gerrard, D.E, Gao, X., & Tan, J. (1996). Beef marbling and color

score determination by image processing. Journal of Food Science, 1,

145±148.

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural

features for image classi®cation. IEEE Transactions on Systems,

Man and Cybernetics, 3, 610±621.

He, D. C., & Wang, L.(1991) Texture features based on texture spec-

trum (1991). Pattern Recognition, 5, 391±399.

Kim, N. D., Amin, A., Wilson, D., Rouse, G., & Udpa, S. (1998).

Ultrasound image texture analysis for characterizing intramuscular

fat content of live beef cattle. Ultrasonic Imaging, 20, 191±205.

Lee, J. H., Lee, N. I., & Kim, S. D. (1992). A fast and adaptive

method to estimate texture statistics by the spatial grey level depen-

dence matrix (SGLDM) for texture image segmentation. Pattern

Recognition Letters, 4, 291±303.

Lepetit, J., & Culioli, J. (1994). Mechanical properties of meat. Meat

Science, 36, 203±237.

Maloigne-Fernandez, C., Smolarz, A., & Bouvier, J. M. (1989). Car-

acterisation de biscuits extrudeÂ s par des meÂ thodes statistiques

d'analyse de texture. Traitement du Signal, 6, 205±215.

Miller, R. K., Taylor, J. F., Sanders, J. O., Lunt, D. K., Davis, S. K.,

Turner, J. W., Savell, J. W., Kallel, F., Ophir, J., & Lacey, R. E.

(1996). Methods for improving meat tenderness. Reciprocal Meat

Conference Proceedings, 49, 106±113.

Mitchell, O. R., Myers, C. R., & Boyne, W. (1977). A max±min mea-

sure for image texture analysis. IEEE Transaction on Computers, 26,

408±414.

Pentland, A. (1984). Fractal-based description of natural scenes. IEEE

Trans. Pattern Anal. Machine Intell, 6, 661±674.

Whittaker, A. D., Park, B., Thane, B.R, Miller, R. K., & Savell, J. W.

(1992). Principles of ultrasound and measurement of intramuscular

fat. Journal of Animal Science, 70, 942±952.

O. Basset et al. / Food Chemistry 69 (2000) 437±445 445


